Catch-up June 28th – Sept 30th

Another major gap from me as my travels have continued…

A major theme that emerges for me over the past few months is on non-medical uses of genetics, made possible by 1) Continued growth of Direct to Consumer (DTC) testing, 2) large scale studies of non-health traits, and 3) increased acceptance of polygenic risk scores, whereby an aggregate score for a given trait is made from small contributions from many genetic markers. This is something we need to talk about.

1) Millions of DTC tests have been sold in the US (over 12 million, according to one estimate from February). A poll found that “Some 17 percent of Americans already have undergone at least one kind of DNA test, and 52 percent of the remainder say they’d like to.”

2) In the last few months, there have been large scale studies of neuroticism, intelligence, social mobility, and on social traits including loneliness. A lot of research into such “social” traits is performed under a health mandate, as many such traits correlate with health outcomes.

3) Polygenic risk scores can be much better at identifying those at risk of serious conditions. That’s the conclusion of a paper and the basis for a new tool that will ingest e.g. 23andMe data and give you a score. From the paper: “The approach identifies 8.0, 6.1, 3.5, 3.2, and 1.5% of the population at greater than threefold increased risk for coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, respectively.” These successes, combined with the type of studies I listed above, lead to, for example, educational achievement and cognitive performance polygenic risk scores, explaining 11-13% of variance, 7-10% of variance respectively. Such scores have already make it into DTC tests, for example educational achievement markers are available from Helix.

Needless to say, such scores have the potential for large social implications. The educational achievement study has appeared all over the press, but I have found good critique of possible implications scant. This piece is an exception, one example:

“There’s as much to be learned about the nature of our educational system as about the nature of the individual in this data,” said Mary Helen Immordino-Yang, professor of education, psychology, and neuroscience at the University of Southern California. Specifically, if certain genetic variants are associated with better educational outcomes, then there might be something about the structure of our educational system that’s favoring people with these variants. For example, if the variants were involved in language comprehension, that could tell educators that current teaching methods aren’t working for students who process language differently. That means they should be designing new interventions to accommodate that variation, Belsky said.”

Such reflection is critical. Contrast this with the authors of a paper titled “The stability of educational achievement across school years is largely explained by genetic factors”,  state the motivations and consequences of their work are that “we could use DNA tests at birth to identify children at genetic risk for developing reading problems, and give them early intervention.”

Separately, additional potential downsides of the DTC genomics movement have been in the news. I highlight three:

  • What happens when DTC tests reveal unexpected family secrets? The Atlantic has a piece on a facebook group, with over 1000 members, that allows individuals affected to vent emotions and plan next steps. Meanwhile in the UK, the fertility regulator has called for genetic testing companies to better highlight chances of uncovering family secrets, additionally saying that anonymity for sperm/egg donors is a thing of the past.
  • In the light of and Spotify teaming up to offer playlists based on your results, a critique of how genetic ancestry testing, who focus on the fact your DNA reveals something meaningful about you. This runs from “conflating DNA and cultural identity” (routing for a World Cup team based on results) to “game programs set up to address past injustices” (using results to prove Native American or African ancestry), to reifying race as a meaningful category (citing a study that showed reading about these tests increased beliefs in racial differences).
  • A report on four cases of families who act on information obtained from raw data provided by DTC tests. In these cases, none of the SNPs reported turned out to be present. Another story of a discordant 23andMe and Ancestry result over a very worrying variant.

I think it is worth highlighting what we have learnt about consumer preferences

  • The Associated Press reports a poll of 1109 adults it performed on questions related to genetic testing (also refed above on number of people interested in genetic testing). On whether people would want to know if DNA showed they had a genetic variant associated with an incurable disease. 60% said Yes, for under 30s the number was 78%. Most (but not all) would tell family members). The poll also asked about the use of DNA by the Feds — “Half of people think genetic data should be used to help solve crimes only with the consent of the person tested, a third think it’s OK without that consent — and 13 percent don’t think law enforcement should use it at all.”
  • A Pew poll found majority support for gene editing for babies for health reasons. Men and more supportive; religious people are less supportive. If the intervention relies on testing embryos, most are opposed.
  • A U of Michigan study on patient attitudes to their biobank samples being commercialized. “67 percent of participants agreed that clear notification of potential commercialization of biospecimens is warranted, but only 23 percent were comfortable with such use. Sixty-two percent believed that profits should be used only to support future research, and 41 percent supported sharing profits with the public.”
  • STAT reports on consumer adoption of genetics in China. Those in the space refer to a particular emphasis on a Chinese fascination of how genetics affects identity and destiny, and, for the generations born under the one child policy, with finding family. Routine newborn genome sequencing is on the cards within the next five years (Veritas already has a product in pilot out there). Because there isn’t an entrenched medical genetics profession, there will be less paternalism about results.

It strikes me that the academic literature is all about efforts to ensure that people’s informed choices are respected. A lot of this type of work, which looks at what those choices are likely to be, happens outside the academic mainstream. This is an observation I intend to check.




And finally, a nice piece from science historian Oren Harman on use of the term “gene” — historically and in the future. And another lovely piece about how some of the genes got their names, including the background to “Pray for Elves”, which I learnt originates with someone I used to work with, Prof Mark Yandell.